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Spheromak Power and Helicity Balance

This note addresses the division of gun power and helicity between the open
line volume and the closed flux surface volume in a steady state flux core
spheromak1. Our assumptions are that fine scale turbulence maintains each region
close to an axisymmetric Taylor state, Poj = XB.

The gun region that feeds these two volumes surrounded by a flux conserver
is shown topologicaly below. (The actual geometry is toroidal). Flux and current
from the magnetized gun flow on open lines around the entire closed surface
containing the spheromak. The gun current flows down the potential gradient, the
potential difference between the two ends of each line being the gun voltage. Here,
the gun voltage excludes the sheath drops at each end.

These volumes have different values of X in each region (open line volume
V1 and closed spheromak volume V2) and we want to calculate the efficiency of
transferring the gun power to the spheromak to sustain the ohmic loss in steady
state.
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Helicity Conservation

We assume constant X-values in each region and a step function drop from
region 1 to region 2, with PoJ1 = X1B1 and PoJ2 = X2B2. The helicity loss and ohmic
powers are;

dK1 K1 21Jo dK2 K2 21Jo
dt - ’~1 - X1 Pohl and

dt - 1:2 - X2 Poh2

with %~ = I J°
2qc~Xc 2 ̄

state,

The gun supplies the total helicity K1 + K2 to maintain a steady



so

dKtot 2Vg~g 2po K1 K2
dt - =~ Pgun - +’~1 ’~2

~,2
Pg = Pohl + Xll Poh2

X2If f region 1 shrinks to zero volume (K1 = 0) the ohmic power in region 2 is ~-1 Pg"

The ratios of ohmic power and gun power are,

(Poh)l = [1 K2"Cl ]-1 (Poh)2 X211 K1"~2]_1Pgun +K1’~2" Pgun - ~11 +K2’~1 with K~ = ~2dVo~

Power Balance

Now let us balance the gun power with losses inside the closed volume. In
what follows we assume there is a non-zero mean value of the products EoB and

j°E which determine helicity loss and power loss respectively. First, the flow of
power into region 1 is along the open lines, where there is an electric field
consisting of the dynamo field Edynl (which may or may not time average to zero)
and the ohmic field qljl. There is a flow of power across the separatrix surface
which we call P2. So we can equate the inward flow of power from the gun to loss
of power in the volume plus flow of power out of region 1 into region 2;

Pg = ~jl°EldVl + P2 = j’jl°EdynldVl + j’qlj12dV1 + P2

That power flow into region 2 sustains the field against ohmic losses that would
otherwise cause the stored energy to decay and feeds the dynamo in that region.

P2 = j’j2°Edyn2dV2 + fq2j22dV2

Adding these and using the fractions of gun power going to ohmic heating,

~,1 . 1)Poh2 = PdynPg - Pohl - Poh2 = j’joEdyndV = (~2

The dynamo term is non-zero only where there is a gradient in X, as we will see
later, and as ;L1 approaches ;L2 the need for a dynamo vanishes and that power is
zero (a state one cannot actually reach). The dynamo power first goes into waves
or MHD modes but eventually into the plasma ions and/or electrons according to
details of the processes that try to maintain a Taylor state.

The gun power provides the input for dynamo power and ohmic heat, but
each of these three (Pdyn, Pohl, and Poh2) can also be viewed as plasma input
power, and we could write diffferent equations that distribute this input heat and



wave power to various loss channels, such as radiation, power to restore charge
exchange ion losses, conduction or convection loss, etc. To understand how the
dynamo power is distributed one needs more detail on the process, which we will
not present in this note.

Dynamo Transport

We assumed so far that the X-values were constant in each region, with an
infinite gradient at the boundary of the two regions. In reality there is some gradient
everywhere, and integrals involving j use IJo-IXB so that X cannot be taken outside
of those integrals as we have done. To understand better the role of the X-gradients
let us use a model suggested by Hooper2 from the work of Boozer3 and Strauss4.
The model gives the mean of a product of the dynamo electric field and magnetic
field, valid for small-amplitude fluctuations, containing the X-gradient and ~, a
hyper-resistivity,

]<B2
Edyn-B = - V ¯ {~o-o VX}

Then, a calculation of the dynamo power loss in a volume V is

f X

f X V KB2
~j.EdyndV = ~o B’EdyndV = - IJo " { ~VX}dV

If we first apply this result to the entire volume inside the flux conserver, the
first integral can be converted to a surface term which is zero on the walls since VX
is zero there. There are two wall surfaces, one where the gun flux enters the
volume and the remainder where the flux is parallel to the wall. In either region, VX

is zero at the wall. The remaining term can be written f~:j2 [VX]2X---- ~- dV, which
J

suggests that the strength of the dynamo in a given spot is inversely proportional to
the square of the gradient length there, and that there is no dissipation of dynamo
power without a gradient in X.

We now integrate j’Edyn in volume 1, where there are two kinds of surfaces,
the flux conserver and the separatrix surface between regions. The surface integral
is not zero on the latter, so that our power P2 that flows into region 2 is proportional
to VX on that surface. With $1 the common surface connecting the two regions,

and Pdynl= fKj12[:~X212dV1
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So, the dynamo in region 1 supplies some power to region 2 but some is dissipated
if there is a X-gradient in region 1. Integrating j.15 in region 2 gives three terms, the
dynamo surface term above, any dynamo volume dissipation if VX ~ 0 inside the
volume, and Poh2.

If we assume the X-values are constant in each region, with a jump in X at the
bounding surface, then all the helicity flow and power dissipation from the excess X1

> X2 would take place there. In reality, as we indicated here, it is distributed. When
it is, the simple calculations above must take into account the spatial changes in X.

These results are presented only to qualitatively understand power density
and flow as they relate to X-gradients. The concept of hyper-resistivity may not be
fully applicable here. And, we point out the obvious, that the calculations of this
note are for axisymmetric ideal spheromaks kept at the Taylor state by fine grain
turbulence. The calculations are done for the purpose of better understanding the
gun power balance, not for understanding the physics of spheromaks driven by
large amplitude low mode number (both axisymmetric and non-axisymmetric)
instabilities.

power and Helicity Loss

In this section the fraction of ohmic power and helicity to the open and closed
field regions during steady state is given based on a simple model below of a gun
driven spheromak. The fields in the closed line region 2 are modeled by those of a
closed cylinder of height L, radius R. The open lines in region 1 are in a column of
radius R1 on the geometric axis and a return annulus with inner and outer radii of R2
and R. From this model we generated Table 1, showing the fraction of stored
energy in regions 1 and 2, normalized to the stored energy if R1 --> 0. From these
results we compute helicities as a percent of the total and ohmic power as a fraction
of the gun power. It is assumed that the X-gradient is all on the surface between the
regions.
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The fields inside the closed flux region are given by
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II

Br2 = ~~9Bo2 sin(kz) Jl(lur) B¢2 = Bo2 cos(kz) Jl(pr) Bz2 = ~r-~Bo2 cos(kz) 

with kL = =, I JR = 3.83, X22 = k2 + #2.
In the open line region the assumption that the lines are straight is valid when

L >> R, and we will assume the radial extent is sufficiently small that both the radial
and toroidal fields can be neglected in these columns (we will be integrating 2 f or
helicity). Across the boundary of the two regions we must increase the ratio of
current to field, so we match the Bz fields and make a jump in the current Jz and the
(very small) toroidal field to account for the higher X. The fields in region 1 are then

Br1,¢1 = 0 and X1Bzl = IJBolCOS(kZ)Jo(lJr). There is a scale factor change in Bo 
the X-ratio, X1Bo2 =X2Bol, for continuity of Bz into region 2.

We want to calculate the helicities Xo~K~ =SBo~2dVc~ = 2poWmag = 2po(Poh)o(~o~

where the time constant "~o~ is 2qc~Xo~2’~o~ = Pc. In region 2, with 21JoWo = ~R2LBo22,
and with r = xR, XlR = R1, x2R = R2. Then,

X2

-Wv~/ag2 = f{l+ (~22)2J12(3.832x)+ (X~2-2)2Jo2(3.832x)}xdx

Xl

For Xl = 0 this integral is 02 = Jo2(3.832) = 0.162. In region 

Xl 1Wmagl = (t-I)2{ 0.[XJo2(3.83x)dx + j’XJo2(3.83x)dx }

Wo X2 X2

The normalized radius x2 is found from x1 by returning all the column flux into the
R1 R

outside annulus, ~# = [2~rBz2(r,0)dr = j’2=rBz2(r,0)dr. But at the outer edge Bz 
5 F{2

= - 40% of what it is on the r = 0 axis so for small Xl the radius R2 is found from R12 =
0.4027[R2 - R22] and X22 = 1 - 2.483Xl2. If we further assume L = R, as in SSPX, so

that (J~-)2 = 0.6 and (.k~)2 = 0.4 we get the results in Table 1 below.
X2 X2

Results

The stored energies in the Table are given as a percent of C2Wo, and the
helicities are a percent of the total. Ohmic power loss is a percent (Pl,2) of the gun
power, and the power balance formulas from above are,

Pg q2X2W2 Pg ~L1(1 qlXlWl, X1

Pohl = 1 +
= -- + = -

qlXlWl Poh2 X2 q--~2~2)
Pdyn (~22 1)Poh2
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From Poh2 W2= -- we get the fraction of the gun power sustaining the spheromak.
1:2

The helicity percentages (of the total) in regions 1 and 2 are hl,2

X2 W1;L1 W2 (h2) -1 = 1 + --
(hl) -1 = 1 + X--2W-~-

X1 W2

In the table, n = ql and L X1 "c2= X22 from which we compute T = --"~1

The primary result is quite evident. When the open line volume is small, but
its resistivity is high relative to that in the spheromak, most of the gun power
available for increasing stored energy (through sustaining and exceeding the ohmic
loss) goes to the open lines. Further, the difference of Pl and P2 from 100% is the

power available for the dynamo. In all these cases, for ~,1 = ;L2, the dynamo power
is equal to Poh2. For the higher resistivity ratios it is reduced, since it must feed the
helicity decay in region 1. Although that helicity is small, its rate of decay is very
large. Of course, in the limit of a very hot spheromak nearly all the gun power
sustains the edge.

Table 1
Helicity and power fractions as functions of q, X

x 1 x2 %Vol n L T %wl %w2 hl h2 pl p2

0.05 0.997 0.871 5 2 20 0.272 99.72 0.136 99.86 2.66 48.67
0.1 0.988 3.483 5 2 20 1.038 98.89 0.522 99.48 9.5 45.25
0.14 0.975 6.827 5 2 20 1.917 97.8 0.971 99.03 16.4 41.81
0.18 0.959 11.28 5 2 20 2.925 96.34 1.495 98.5 23.3 38,35

0.05 0.997 0.871 10 2 40 0.272 99.72 0.136 99.86 5.17 47.41
0.1 0.988 3.483 10 2 40 1.038 98.89 0.522 99.48 17.4 41.32
0.14 0.975 6.827 10 2 40 1.917 97.8 0.971 99.03 28.2 35.92
0.18 0.959 11.28 10 2 40 2.925 96.34 1.495 98.5 37.8 31.11

0.05 0.997 0.871 50 2 200 0.272 99.72 0.136 99.86 21.4 39.28
0.1 0.988 3.483 50 2 200 1.038 98.89 0.522 99.48 51.2 24.39
0.14 0.975 6.827 50 2 200 1.917 97.8 0.971 99.03 66.2 16.89
0.18 0.959 11.28 50 2 200 2.925 96.34 1.495 98.5 75.2 12.39
0.2 0.949 13.93 50 2 200 3.443 95.49 1.771 98.23 78.3 10.86

The current Ig = jlx12[~R 2] flows through a resistance ql(length/area). The
length of both the column and the return annulus is L = R, while the normalized

areas are Xl2 and 1 - x22. So the resistance is 1.4ql Pohl _ p1(%) iVg.g
x12~L - Ig2
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Appendix

We’ve used the relationship between power and helicity rate for regions of
;L dK

constant ;L, Poh - 21Jo dt dependent on the guage invariant form of helicity,

(;L = constant)

In steady state the loss of helicity and the rate at which magnetic energy is
X dKo dWmag = Poh.

converted to ohmic losses can be equated, 21Jo dt- dt

Although the separatrix boundary between regions 1 and 2 is not a
conductor, we assume that the mean magnetic fields lie in flux surfaces so that B.n
= 0 on that surface. The regions are simply connected and the helicity Ko is gauge
invariant, and helicity can be defined in each region.

Nonetheless, we could use another form for helicity which is always gauge
invariant1, K = Ko - .$A.d ~p .~A.d ~.T. Here, the first closed path integral is the short
way (poloidal) around a flux surface boundary (Bn = 0), and the second is the 
way around (toroidal). Using the separatrix boundary surface to evaluate them, the
toroidal flux inside the separatrix (region 2) is ~T = ;L~A°d~.p. Also, ;L~A°d~.T =
~B.d~.T = 2=RBT (note that RBT is constant, so the toroidal path can be taken

anywhere on the flux surface). Now, though ;LK and 21JoWm are related differently
dK

than is XKo, our integrals are constant during equilibrium so ~- can be related

directly to ohmic power.

Acknowledgement

This work was performed under the auspices of the U.S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory, under
contract No. W-7405-Eng-48.

7


